pyacs.glinalg.solve package¶
Submodules¶
pyacs.glinalg.solve.ls module¶
- pyacs.glinalg.solve.ls.ls(G, d, verbose=False)[source]¶
Solve the least-squares (LS) problem m so that (Gm-d).T (Gm-d) is minimum.
- Parameters
G – m x n model matrix as 2D numpy array
d – m 1D numpy observation vector
verbose – verbose mode
- Returns
x,chi2: m (1D numpy array of dim m), chi2 (chi-square)
- Note
solved through numpy.linalg.lstsq
pyacs.glinalg.solve.lscov module¶
pyacs.glinalg.solve.lsw module¶
- pyacs.glinalg.solve.lsw.lsw(G, d, std)[source]¶
Solve the least-squares (LS) with data uncertainties provided as a vector
- Parameters
G – m x n model matrix as 2D numpy array
d – m 1D numpy observation vector
std – standard deviation vector for d
- Note
the system is modified to be solved by ordinary LS by the change G<- (G.T/std).T and d<- d/std